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Chapter 1

INTRODUCTION

1.1 Summary of Results

——————
fgael

Let [vk, k =2 0} be a discrete time Markov process with state

space EC(-»,») and let S be a proper subset of E., In several

i A s it
T

applications (see [8], [12], and [13]) it is of interest to know the ;

behavior of the system after a large number of steps given the process

[F O S ——

has not entered S, For example, if v is a branching process and

S = {0} a limit theorem for (vnlvm# 0 1< m=<n) gives information

G b 3 e o

about the size of v, on the set [vn > 0].

In [2], Seneta and Vere~Jones have given conditions for the

R T Ty

convergence of

o @ = p(vn=3lv0=1,n > n) (1)

J s
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where Ns=inf{m 2 1:vm€S]. In many cases, however, all the limits in

(1) are zero., Applying the results of (2] when v, is 2 branching

oo e T B R Ay koL A 1 W N

*
process and S = {0} gives that Qﬁ = lim Oij(n) is a probability
nowo
*
distribution when m = E(vllv0=1) <1 and 05 =0 when m2 1, To

P

B7 PSR

L

s
o

obtain an interesting theorem in the second case we have to look at the

limit of (vn/cn[v0=1, N, > n) where the c, are constants which

T

S

t o, o

In this instance the most desirable type of result is a functional >

TN

limit theorem, i.e., a result asserting the convergence of the sequence

o,

of stochastic processes {V;(t),o € t s 1} defined by i(

. i e,

o

V;(t) = (v[nt]/cn|v0=1, Ng > n) )
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where [x] is the largest integer < x, This was the goal in the
applications cited above but in each case the results given are
incomplete due to problems with the tightness argument,

It was the presence of these technical difficulties which motivated
this investigation, The techniques we have developed allow us to
complete the work mentioned above. While writing out the solutions
1o these problems we noticed that the arguments we were giving had
many aspects in common., To determine which properties were used and how
they contribute to the proof, we isolated the hypotheses as numbered
assumptions and studied their relationships and consequences. As a
result of this we were able to formulate general conditions for the
process V; to converge when S = (—=,0]NE,

There are two advantages of deriving our conclusions from a set
of basic assumptions. The first is obvious: a person who is interested
in proving a conditional limit theorem may apply our results directly
instead of having to modify our proofs to meet his needs., A second,
less tangible, benefit is that the arguments we give do not depend
upon special properties of the Markov chain and so the proofs may
contribute to an intuitive understanding of the conditions needed to
guarantea convergence.

It is the second idea which has been our guide in the developments
below, Our aim has been to find assumptions which create a sharp
diviasion into cases, i.e., so that the limit theorems hold under the
assumptions given and fails or is trivial in the other cases. To
describe the extent of our success we have to explain our results

in some detail.

¢ e e A TR,
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We begin by stating our three basic assumptions: (1) vk. k20

i8 a Markov process with state space E C(-»,®); (i11) there are constants

c t ® with cn+1/cd+ 1 so that if xd» x and xncneE for all

n then

voo= (vrn']/'cnlvo/cn = xn) = (V|[v(0) = x) = v
where V 1is a Markov process with Vy nondegenerate for some y > 0

inf
0ss<t

3

and (111) P{ v(s) > 0} > 0 for all t,x> O.

x
Here the symbol = wmeans that the sequence Vnn converges weakly
as a sequence of random elements of D - the space of right continuous

*
functions on [0,1] which have left limits, Nondegenerate means that

P{v*-£} <1 for all feD.

LA R Tat AR g e T ET

Let N=N(_°° o]’ It is under assumptions (1)-(i1ii) that we will
’

OETE A S

x

derive conditions for the convergence of (vnn[N'>-n) (a) for all
€ .

x> x 2 0 and (b) when L IO yeE

We will obtain our conditions for the csase xd* x> 0 by solving

Y T SAE A S

a more general problem, In Section 2 we give sufficient conditions for

the convergence of Pn(-’An) = Pn(~ﬂAn)/Pn(An) when the Pn are

probability measures with inf ﬁ;(An) > 0, Applying these results to
n

£

rp. Inf

sets A = ‘f‘OSsStn £(s) > 0] with t - tel0,1] we find that if

LN

X
| PXn and P* are the probability measures induced on D by vnn
and V', and x- x> 0 then 6‘"(N’> nt_) =+ PE(T t]' is
! ’ n n n d>

X
sufficient for (vn“IN >nt )= (V"l’ro > t) when Ty=inf(t > O:

; inf . :
| t/2sact 1(87 < 0).

*
In Section 2,1 there is a brief description of this space and the
( weak convergence results used in this paper. Most of the results we
will need can be found in [20].
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x
1f x = 0, however, Pnn(N > n} - 0 (in most cases) so a more
delicate analysis is required. Our method for proving convergence in

this case will be to show that if Tg = :lnf{k:vk/cn =2 €] then

lim (v[n_ ]/cnlvo =X.C N> n) P
n-» o 3

= lim lim (v[ n /cn[vo: X €. N> n)
€o0noew T€+n- ]

= lim  lim (v /c_lv. =€c_, N> n) :
€5 0mn - o [n-]""n'"0 n

= lim (V€|T0> 1) o
€->0

In Section 3 we will show that these three equalities hold if (in

»

addition to (i)-~(iii)) we have g

T A e R

Xy, x
(iv) Pn {N > ntn] > P {T0> t} whenever x> x> o, tn-> t >0 and

x
(v) P P{N>nt } 5 0 whenever x -+ 0 and t - t> 0,
n n n n

H The key to our proof is the following fact (first observed by Lamperti

g in [25]):

Fi Theorem 3.2 If (i) and (ii) hold there is a & 2 0 so that for b
% all c¢>0 v 9 ov* .0y

This sealing relationship identifies the processes which can occur as

v
I ST

limits in (ii) and can be used to deduce many properties of the limit

T

process. In Section 3.1 we use (*) to compute relstionships between

the numbers Px[TO > t}. These formulas are used to identify trivial

cases and obtain sufficient conditions for (iii), (iv), and (v) to hold.
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In Bections 3.2 and 3.3 we use these preliminaries to prove our

conditional limit theorems. To do this we reverse the usual procedure
for proving weak convergence. In Section 3.2 we develop sufficient
conditions for V; to be tight. In Section 3.3 we find conditions

for the convergence of finite dimensional distributions:

Theorem 3.10 Suppose (i)-(iv) hold and v; is tight. If
+ x o
Vi= lim (V |T01> 1) exists as ts # 0 then V =V if and only if
x}0
lim lim P[V:(t) >8} = 1 forall t> 0

640 o

1f X,C, = 8 and (v) holds this condition is equivalent to

P{N > nt,vo = a} 4
lim — = t for some g 2 O .
oo P(N > nj Vo = a}

In Sections 4.1-4.4 we use the results of Section 3 to prove

conditioned 1imit theorems for random walks, branching processes, birth

and death processes, and the M/G/1 queue which contain the corresponding

results of [6], [8], [12] and [13] as special cases. It seems likely

that our methods can be extended for the non-Markovian examples studied

by (7] and [11], but we have not tried this.

A more interesting unsolved problem is to prove that if

S f}xi is a random walk with Exl =u<o0, E(xl—u)2= 02 <o and
n
=1

P{x1 > 0} > 0 then (S[n.]/on1/2' so= o,N > n) converges to the

(=,0]
Brownian bridge (see [20] p. 64 for a description). Conditions for

convergence are known if E(eexl)'< ® for 6e(-a,a) (see [4]) but

methods given here cannot be applied since (ii) does not hold for
1/2

c_ =gh
n o4

H
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g
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In Section 4.5 we show that the developments in Section 3 can be
modified to prove the results of [5] and [14] for random walks
conditioned on {NB > n} when B is a bounded subset of the state
space. This example suggests that our results may be extended to

‘ conditioning to avoid other types of sets §. Unfortunately there are

(o]
1. -

converges then N ( U Sc_) is {0}, (=,0], [0,®), or (==,®) so

m=1 n=m
we have already considered the two reasonable cases.

ing. A natural candidate for this is conditioning on {vneA] or
{(vn_l,vn)eB]. Several 1limit theorems of this type have appeared in the
literature with A = {x} or [a,b] (see [15]-[18]) and

B = (=0,0)x(0,») (see [19]) and it seems that our methods can be
applied. These conditionings have the most effect at times close to 1,
however, so we have to reverse our perspective and new techniques are

required. We plan to consider these limit theorems in a later publica-

tion

no other possibilities. It is easy to show that if (vn/cnlv0=y, N§> n)

To generalize our results we can consider other types of condition-

-

[ 53
X



1.2 Weak Convergence and the Geometry of D

Let (S,p) be a metric space and 4 the class of Borel subsets
of S§. 1If Pn, n= 0 are probability measures on 4 and
Ifdea ffdPo for every bounded continuous f on S then we say Pn-

converges weakly to P and write Pn = P

0 There are, of course, many

o0
other definitions of weak convergence.
Theorem 1. The following four conditions are equivalent:

(i) P =P
n

(ii) 1lim IfdPn < ffdP for all bounded upper semicontinuous f
n

(iii) 1im Pn(G) = P(G) for all open sets G and
n

(iv) pn(A)-> P(A) for all A with P(JA) = 0.

This and most of the other weak convergence results we will need can
be found in [20] or are given in Section 2. 1In addition to the standard
results, however, we will need some special facis about the geometry of
D which are not available in an easily quotable form. These results and
some related well-known convergence notions are explained below. Proofs
are given only for results which cannot be found in [20].

let D be the space of functions on [0,1] that are right contin-
uous and have left limits. Let A denote the class of strictly
increasing continuous mapping from [0,1] onto itself. For f and g
in D define d(f,g) to be theinfimum of those positive € for which

there exists a AeA such that




s, e e o O el A el
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! sup| A (t) - t, <g (@) 3
! t \
and
sup| £(t) -~ g(M(t)]| s € (2)
t

i
3
{
i
3

It is easy to show that d is a metric for D ([20], p. 111).

Many facts about the resulting topology for D are given in Chapter 14

of [20]. 1Two of these results which we will need later are: 4
4 f > sup f(t) 1is a continuous function 3)
3 0sts1
4 “ 3
; if n () = £(t) then n, 1is continuous if . o
;% 3
é and only if t =0 or t =1 (4)

For this study we will need information about the continuity of

other functionals h:D - R. The first we shall investigate is the

modulus of continuity w;(é) = w;(G;O,l) defined by

(5) gives Lé(ﬁ) < u;(é) + 27,

E W;(G;a,b) = inf [max ( sup I f(s)_f(t)l)] . ) ) 5
¥ : <$< '3
(ti} 1<i<r tﬂss t ti o
;' where the infimum is taken over all sequences g
. | <t = - N 3
? a <ty <ty...<t, =D with min(ti t; 12>8
g | . Bt
| Theorem 2. f w%(é) is an upper semicontinuous function. g 3
Proof. i ‘}
ul' Let n> 0. Suppose ti are chosen for f so that the expression i
% - ~
‘ in (5) is less than m;(é) + 7. If d(f,g) < Eb = NMA( min ti-ti_l-é)/z P
1<i<r L'
3 4
‘N and heA is such that (1) and (2) hold for E:EO, using Mti) in G
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For the proof of Theorem 3.3 we will nced to know about the

continuity of the hitting times which we definec

Ty(f) = inf{t > 0:f(t) = y)

It is easy to construct examples which show T

upper semicontinuous:

For 1 £ n< o let

(3 + 1/n)x
fn(X) =

x + 1/3

(3 - 1/n)x
gn(X) = gn(1/3)

x + 1/3

0 <
1/3
2/3

A

All is not lost, however. The next result shows

is almost surely continuous.

for y> 0 by

is not lower or

< 1/3

e
&
b

x < 2/3

x <1

that almost every Ty

Theorem 3. Let zﬁy be the set of discontinuities of Ty. If P

is a probability measure on D then

Lebesque measure zero.

Proof.

Let T;(I) = inf(t> 0:1(t) > y)

]

™ (1)
y

Clearly, To(f) = T () = T,(D).

inf{t > O:sup f(s) = v}
s<t

{y > 0:P(by) > 0} is a set of

ke o A W SR Dl S bR

N

i

b aedis

W Y TP




+ . . .
Ty is upper semicontinuous.

Proot.
If T;(f) <w® then for any n > 0 there is a positive

g < ’I‘;(f) + 1, so that f£(s) > y. If d(f,g) < EO = (f(s)-y)An and

AeA  is such that (1) and (2) hold for E:EO then g(A(s)) > y and

As) > 0 so T';(g) < T;(f) + 21,

Lemma 2. Tﬁ is lower semicontinuous.

Proof.
If Tﬁ(f) = 0 the conclusion is obvious. If Tﬁ(f) = o then

sup f(t) <y so if d(f,g) < y-sup £(t), Tﬁ(g) zw. If O0< Tﬁ(f) <
t t

then for any positive s8< Tﬁ(f), sup £(t) <y. If ne(0,s),
t<s

d(f,g) <%, = (y-sup f(t))An and AeA is such that (1) and (2) hold
t<s

for g::go then supf{g(t):t < A(s)} <y so Tﬁ(g) > A(s) 2 s-7.

Lemma 3. If P 1is a probability measure on D then

ly > O:P(f:Tﬁ(f) << Tz(f)}> 0} has Lebesque measure zero.

Obscerve that Tﬁ(f) < Ty(f) only if f(0) =y or {f is
discontinuous at Tﬁ(f), so for any f there are only a countable
number of values for which strict inequality holds (see [20], p. 124).

For the other half observe that the intervals TTy(f),T;(f)) are

disjoint for different y so only countably many arec not empty.




+
Combining this with the firsi observation gives Ty:Ti(f) < 7T ()} is

y
countable for each { so applying Fubini’s thcorem gives the

desired result.

The preceeding theorem is useful for proofs in which we have some
choice in deciding which Ty te use. The examples above however show
that we can in general conclude nothing about a specific hitting time

of interest (say the time to hit (-»,0]). As a partial remedy we

will define the hitting times in a slightly different manner for y = 0.

T;(f) = dinf{t> 0:£(t) > 0)

To(f) = inf{t> 0: inf f(s) < 0}
t/2<s<t

T(’)(f) = inf{t> 0:f(t) < 0}

T,() = inf(t> 0:£(t) < 0)

We will work with T0 instead of the '"natural"” hitting time

T’ since
0

{£f:£(0) > O,To(f) >t} = [f: inf f(s) > 0)
O<sst

is open (a fact which is useful in Section 2). Observe that if

X
P xe(—w,») are the transition probabilities of u standard Markov process

(sece [22], 9.2.v) then PX{TO: Té] =1 for all x> 0.

. .LL“.“ PRED
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Chapter 2
CONDITIONS FOR THE CONVERGENCE OF Pn(~|An) WHEN inf Pn(An) >0
n
In this section we shall investigate conditions under which the
weak convergence of a sequence of probability measures Pn is
sufficient for the convergence of the conditional measures

P ([A) = P (-0A)/P (A) when igf P (A)> 0.

If P (A) > P(A), we can check that P (:[A) = P(:|A) by
showing that Pn(B ol An) - P(B n A) for encugh sets B. Sufficient
conditions for this are an easy consequence of a generalization of the
continuous mapping theorem ([20]Th.5.5).

To state this theorem requires rome notation: 1let (S,p) and
(S',p') be complete separable metric spaces with Borel fields )
and 4. Let hn’ n 2> 0 be measureable mappings from S to S’ and
let E be the set of xeS such that hn(xn) > ho(x) fails to hold for

some sequence X o X.

with P (E) =0 then P h 1= pht.
0 nn

Theorem 1. If Pn = P oo

0

I1f the hnare real valued and there is an M < ® go that

[hn(x)ls M for all n=0 and xcS then for any B with P(3B) = 0

r h (OP_ (dx) - £ ho(x)Po(dx)

b

Proof.
This result can be easily obtained from the Skorohod representation

theorem.
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Lemma 1. If Pn, n2> 0 are probability mcasures on the complete

separable metric space S such that Pn = PO then there are Borel

measurable xn:(O,l) -+ S so that Xn has distribution Pn and

Xn converges to X almost surely (with respect to Lebesque measure).

0
n 2 0 are the variables of the lemma for

-1 -1
Pn,n > 0 then hn(Xn) > ho(xo) almost surely so Pnhn = POhO . To

ho(xo)

If PO(E) = 0 and Xn

’

obtain the second result note that l{xneB]hn(xn) - l(XOeB}

almost surely and use the bounded convergence theorenm.

To use this theorem to obtain a conditioned limit theorem let

h =1, , the function which is 1 on A and 0 on AC. If
n An n n

PO(E) = 0, then Theorem 1 implies that Pn(B n An) - PO(B N AO) for
all B with PO(BB) = 0. To confirm that this is enough to guarantee

Pn(-]An) = PO(-,AO) we use the following lemma ([20], Cor 1, p. 14)

with U = {B:Po(aB) = 0}.

Lemma 2. A sequence of probability measures Qn converges weakly

to a 1limit Q if there is a class of sets U so that
(a) U is closed under finite intersections;
(b) for every xeS and € > 0 there is a B is U with xeB0
(the interior of B) and B C {y:p(x,y) < €}: and

(c) Q (B) » Q(B) for every B in U.

To translate Pb(E) = 0 into a condition on the sequence An
c
note that xcE if and only if there is a kX and § > 0 so that

p(x,y) <6 and n 2> k implies ho(x) = hn(y). If ho(x) =1 then

13
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ho(x) = hn(y) for all n2> k means ye[) An so in this case erc ' 4
n=k 4
0 *
if and only if xe U{ MA_Y. Similarly if h (x) = O then xcES i
n 0 i
) k &k 1 1
i 0 4
3 if and only if =xe yf N Ai . :
From this we get ;
4 0 [ 0
E = [ufnasY nasi°-lul(naN Nna 1
K1 n 0 n 0 .
) k \n2k Lk \n=k . 3
: 4
: . . c\0lc - .
Using the identity |U [ N An = N[ U An and a little set
k \n>k ] k \n>k
algebra converts the above to
E = [Ao—u OAHO]U N UAn--AO]
k \n=k k \n=k
- 0
uln({ v A} - u(nN An>]
k \nzk k \n>k
‘é Because the two unsightly terms in the above expression are
‘% similar to the ordinary limsup and liminf for sets we will introduce
the following notation:
! - 0 4
LmsP A = N UA_ LIMNF A_ = u( N An> ;
§ In this notation the conditions to be satisfied for PO(E) =0 are |
3 5
3 = - = 0.
(a) PO(AOA LIMNF An) 0 and (b) PO(LIMSP An LIMNF An) 0. From
3 From Theorem 1 we have that if (a) and (b) hold then
P (A) > P(LIMNF A ) = P(LIMSP A ) so we have proved the following 4
: % result. ;«
! L
14 >
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Theorem 2. If P(LIMSP An— LIMNF An) =0 P(LIMNF An) > 0 and

P(AOLIMNF A ) = 0 then P (A) > P(A) and P (-|A) = P(-[A).

A special case of Theorem 2 which we will need in Sections 3 and 4
is the following:

Example: Let S =D and An = {f:inf f(s) > 0} with tda t> 0.
sstn

If qn = sup tm and rn = inf tm then

mz=n mn=n
w -
LIMSP A = [) ({f:inf £(s) > 0})
n n=1 s<r
n
w
= [ {f:inf £(s) = 0}
n=1 s<r

n

(£:inf £(s) 2 0}
<t

il

To compute LIMNF An we observe

{f:inf £(s) > 0) if t =zt for some nz2m
o s<t
na =
n=m

M {f: inf £(s) > 0} if tn <t for all n2 m
€>0 9<t-€

Since the interior of the second set is the first, we have

®
LIMNF An = U {f:inf £(s) > 0} = (f:inf £(s) > 0}
n=1 s<q sst

n
and

i

LIMSP A - LIMNF A = {f:inf f(g) = 0} 1 {T t)
n n sst 0

G
A
e
X
-E
I8
¥

Ao B
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Using Theorem 2.2 now gives that we have convergence whenever
P(T, > t} > 0 and the two sets in the last equality above have 3
probability zero.

This result is sufficient for most, but not all, of our desired

Rttimr oo ® e

i
:
;
g | applications. If P{f:f> 0] =1 then P{f:inf £(s) = 0} = P[T0 < t}
' i sst
¥
'3 and from the computations above we see that Theorem 2 can only be
k] -
: applied in the trivial case P[T0 > t} = 1. To obtain our results
R
k]
} P(f:f2> 0} =1 and P{Tb:> t} € (0,1) we will use the following.
H
3 «)

Theorem 3. Let P be a probability measure and An be a

sequence of events. If (i) there exist Gm t A such that for each m
P(aGm) = 0 and there is a k (depending upon m) so that ;

A DG for all nz k , (ii) P_ = P and (iii) 1lim P_(A ) s P(A)
n m n ’ n n n

then P (A ) > P(A) and P_(-]A) = PC|A).

§ Proof.

% N

3 By Lemma 2 it suffices to check that Pn(B F)An) - P(BMN A) for

A

% all B with P(@B) = 0. From (i)

] lim Pn(B7q An) 2 lim Pn(B{W Gm) : :

’ N Ty R

! Since P(3(B(N G )) < PB) + PQG,) = 0
lim Pn(B N Gm) = P(BN Gm)

Ny

F
A

Letting m 5 © now gives lim Pn(B[W An) 2 P(B A). Since
nH®

Rl

3(B%) = 3B, PQ(B®)) = 0 and we have :
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lim Pn(Bc Nay = P N A)
N0

Using (iii) now gives
- rarowy . C
lim P (B N An) < lim Pn(An) lim Pn(B n An) < P(B) A)
n->o N N
which completes the proof.
Condition (iii) suggests that to apply this theorem to examples
we would like to construct the largest A for which there is a sequence

GmTA which satisfies (i). To do this we observe that if Gm satisfies

(i) then G C N A and P(aGm) = 0 so there are € | 0 so

nxk{m) n
that
G:: = (y:{x:o(x,y) < € ) C N A}

nek(m) °

*
has P(UG-~UG) = 0.
m m
m m

* *
The sets Gm may have P(aGm) > 0 but this is no problem. If

H 1is any subset, H€= {y:{x:p(x,y) < €} C k] and El < Ez then

€

€ .
B(Hel) CH 2) so O ) F]B(dez) = @. From this it follows

that P(BHE) > 0 for only a countable number of & SO we can

’

*
pick another sequence E; < ern for which the associ "2od Gm have

%
P(3G ) = 0.
m
From this construction we see
Em 0
A = sup Ul NA = Uy NA = LIMNF A
n n n
Eﬁlo m \nem m \n=m

is the largest set which can occur in (i). Using this observation we

can write the result of Theorem 3 in a simpler form.

17
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Theorem 4. If Pn = P and 1lim Pn(An) < P(LIMNF An) then
n

P (A) > P(A) and P (|A) = P(C|A).

If A = (f:inf f(s) > 0), then LIMNF A = {f:inf £(s) > 0] so the
n n
sstn s<t

condition above is 1lim P {f:inf £(s) > 0} < P(f:inf £(s) > 0}. The
n
n sstn s<t

reader should note that if P{f:inf f(s) > 0} =1 (or P(LIMNF An) =1
s<t

in Th. 4) then the conditional measures always converge.

18




Chapter 3

CONDITIONING ON T
é N (-oo,o] >n

3.1 Preliminary Results

In this section we will investigate consequences of assumptions

(i) and (ii). Our first result follows immediately from the uniform

convergence assumed in (ii),

Theorem 1. If there is a Markov chain v, so that v[n.]/cn

converges to V (in the sense specified in (ii)) then V has the

following weak continuity property:
X
if x - x, then v e v (69

This implies, in particular, that V is a strong Markov process.

Proof.

The second fact is a well-known consequence of the first (see

[21], Theorem 16.21). To prove (1) we observe that if X X there

i 13
2 is a sequence nk increasing to o gso that if yn = xk when |
| Xk yn X ;i
3 n s n<n then 1lim V = lim V =V . S
k k+1 n
ko0 I,

The process which can arise as limits in (ii) also have special

properties because they result from scaling and contracting time in a

The most basic of these is the scaling

single Markov process.

relationship given in the following theorem.

and (ii) hold, there is a §2 0

Theorem 2. If asgsumptions (i)

so that

for a11 c¢>0 v* 3 &F¢d 2

for all t> 0 1lim c t/cn tl/6 (here, t= lim ). (3)
e Mo
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Proof.

Let Ae(0,1]. Let mo= mn(%) = sup{m = n:cm/cn < A}. Since

c /c -1 and ¢ » o, ¢ /c > A If x - x and a subsequence
n-1"n n mn n n
of mn/n converges to pe[O,l], it follows from (ii) that

: X
3 (v[m ) /cm ]vo =xc )=V
n n n

and a subsequence of

S converges to )Tlvxx(p') so V¥ d Al xA

Let x

0 be a state with P{V

x.}] <1. If m /n has two
[0} n

subsequential limits pl,pze[o,l] with p, < p, then

4 X x /A L X
Ny %y & 07 4 Xl %,

%o, . d o f (")
so if t> 0 and n 1is a positive integer V ~(t) =V Q(E~) )
2

~

(0]
Letting n - ® and using the right continuity of V at 0 gives

— T

e D T TR, A
b
o

=1 for each t, a contradiction, so 1lim mn(k)/n i -
exists and is positive. 3 3

o)

If we let p(A) = lim mn(X)/n then p 1is a positive nondecreasing
N

function which satisfies p(s)p(t) = p(st). From this it is immediate

d
that p(s) =s for some § = 0 and (2) holds.

L W SN AR

To prove (3) we will consider two cases. First, let §> 0. If

A < ) .
1 t < Az then for n sufficiently large mn(xl) < nt < mn(Az)

ﬁkv 20




A e Y g L

< i < i = . i » this s {

SO Al lim cnt/cn lim Cnt/cn }2 Since this holds for all %1
‘ 6 P& 1/6

P i < i S i = " . -

and Az with Al t < Az this means 1lim Cnt/cn t If §=0

N>

a similar argument shows 1lim cn,c/cn < € for ail €©> 0 and this

;

completes the proof.

Remark. A function L is slowly varying if 1lim L(xt) # L(t) =1 for
e

all x> 0. Using this notation conclusion (3) can be written as

1/&

n = n L(n). Since we will write many statements like this in what

follows we will use the letter 1. to denote slowly varying functions.
The value of L(n) is rarely important for our arguments and in
general will change from line to line. Subscripts and other ornaments
will be attached when we want to emphasize that the slowly varying
function depends upon the indicated parameters.

If §> 0 we can rewrite (2) as

1/6
N N (4)

so (1) and (2) characterize the processes which can occur as limits in
d

c
(ii). If § = 0, however, (2) becomes V * 2 ov® and we can no

C X
-1, nn

longer guarantee that there are cn -» o so that cn Vv (n-) converges.

We have not been able to characterize the limits which can occur when

d = 0. The next few results show that these processes have some

strange properties.

An immediate consequence of Theorem 1 is the fact that for all

c>0

cX X &
P [T0> t} P[T0> te ) . (5)

21
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If A = O this means that py{T0> t} has the same value for all

y> 0 so using the strong Markov property

Ey[T x(s)

y
P {T, > s+t} 0> S; P (Ty > t}]

il

y y
P {T0> s}P {TO> t}

Since #(t) = Py[T0 > t} is nonincieasing, nonnegative, and satisfies
-At

g(t+s) = g(s)g(t) this means Py{TO >t} = e A for some A 2 0

(which is independent of y).

This shows that (iii) is always satisfied if A =0. If &> 0,

however, we are not so lucky. In this case taking c¢c> 1 in (5) gives

only an inequality:
X y
P(T0> t} 2 P{T0> t} when x> y> 0 (6)

so we are forced to take a new approach.

Let S_ = inf{t:Px{T0> t} = 0). What we would like to show is:

8, = for each x> 0. From (2), we have:

if ¢>0 S = ¢S (7)

so either all the SX are infinite or none is.
Suppose Sy < o. Using the strong Markov property
V(T )

y y y+E
= S = < T ;P S T
0 P {To> ) E [T € o’ [T0> €]]

y .
Since V(T ) 2 + and S -~ T <Ss it follows from (7) that
y+€ =Y € y ‘y+€ Ty

the integrand is positive so Py{Ty+€< TO] = 0 for each € > 0.

Since V 1is a strong Markov process this implies Vy(t A TO) is

22
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nonincreasing. When we note that for each t>» 0

]

0o =pP(T > sy} 2 PV(t) = y,T, > t}Py{T0> 5.~ t} we have shown:

Y]

if S < Vy(t) is strictly decreasing for t < T (8)

y ’ Y

Having arrived at a strange conclusion under the assumption

Sy < o we might hope to continue and derive a contradiction. The 2

next example shows that this is not possible.

Example. Let X_ X

1 be independcnt and identically distributed F

PIREE

random variables with mean . < 0. 1If Sn = Sn 1+ Xn for n=1 then

S[n.]/n converges in the Markov sense to ‘uniform motion to the left
I

at rate - p (see [22], Exercise 3.7 if you need a more precise

description). For this limit Py{T‘ >t} =0 if y + ut <0 so

0
sy = —y/u.

In this example the 1limit is degenerate so we wonder: Are there
nontrivial limits with Sy < @?

We will show in Section 4 that no process with this property
occurs as a limit for any of the examples we consider, but the question
of whether (i) and (ii) are sufficient to guarantee (iii) has not been
resolved. The solution of this problem is really of minor importanée
for the applications; it is usually very easy to use (8) to verify (iii).

Up to this point we have only used the scaling relationship for

x> 0. If we let x = 0 in (2) and (5) then we get two more formulas

to help us analyze the limit process. g

s,
A

23
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PO[TO > t)] = PO{TO > tc(‘] (10)
0 d 0

If § =0, (9) says V = cV for all ¢ > 0 so V0 = 0.

- . . x -At
Combining this result with the fact that P {lb >t} = e for

x> 0 gives

1im P ( sup vg(t) > 5!'1’0 > 1)

€0 O<t<1
< exlim P sup Vskt) > 8 l = 0
€0 o<ts1 $

so (VE',T0 > 1) = 0 as &i0. Taking a peak ahead into Section 3.3
we see that this means the only possible limit of V; is 0 so we will
abandon this case and label it trivial.

If 6> 0, (10) shows that PO[Tb > t} has the same value for

0
all t> 0. Since PO{T0 > 0) = 1lim P {T_ > u} it follows from the

ull 0

Blumenthal 0-1 1law ([22], Theorem 5.17) that

PO(TO> t} 1is either = 0 or = 1. (11)
Since {Tb > t} is apen, using (5), (1) and Theorem 1.1 gives

X By _ 0

P {10 >t} 2 1im P {Tb >t} 2 P {TO > t) (12)

yi0
for all t, x> 0.
0
From (12) we sce that if P (T, > t} =1 then PX(TO> t}] =1 for

all t, x> 0 and so we expect that the conditioning to stay positive

will have no effect. For positive levels this is a consequence of the

24
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results of Chapter 2; if X,

x > 0 using Theoroe 2.4 rives

X
PR VI (R R PR

It x - 0 the situation becomes morce complicated., 1f

- n
b h
! 1im P 7N > nl <« 1 then we cannot apply the results of Chapter 2
— n
n
(cuach theorem has Pn(An) > P(A) as a conclusion) and if E
« {
AN 4
N H
; lim P "IN )] -0, V. may fail to be tight. Conditions for :
n n
convergence in this case will be given in Section 3.3. The results
: given there will show that if the limit ex: .ts in the sense of (&) then !
i + .0 . s . ' :
» \"1 = V" | 1 ¢., the conditioning has no effect. . d
" ¥For the rest ot the puaper we will be mainly concerned with what )
& i
b X :
" happens when P I‘O + 1} #F1 for some (and hence all) x . 0. Since 4
3 ‘
T Al
X, ) _ X A ) : ’
4 P IO > t}] is decreasing lim P 1T(‘ >t} exists for cach x> 0.
» 150 ’
?f' Using the scaling relationship gives that this limit i< independent
& |
! of x. Call it N From the Markov property i
{ . 14
X, . X- V(1) i
T - tas] = EVT ot T, - i
1 P ln Hs) E "U t. P 0 q}] ’%
E Ly
A X A 4
g ( Letting s -» % gives & = P vTU >t} so N 0 ?
: 1
. 1f = 0, this agrees with our previous calculation. 1 &> 0, i
; t we can use (1) to conclude
" i ; X ) . 1. . L NXoo .
: lim P [0 <t = lim P :\'1” »>u} = 0O ittt P ‘1() -t A1 0 (1)
x10 ute
The reason for interest in this conclusion is the followving:
Supposs  lim P77 'I‘O > t] =0 for all t > 0 and (iv) holds.
-y x40
9 | If tor cach m PN > ml I x} is an increasing function of
3 - (1)
- x then
- Xn
e ¢ ‘ (v) PN Rrt Y 4 0 whenever x4 0 and t_ -t 0.
! n n n




There is a converse to this proved in [41]:

if (v) holds then so does (iv) . (15)
Since it is usually more difficult to verify (v) than (iv), (15) is
not a useful result for checking that (iv) holds. To obtain the results
we will use to check (iv) in Chapter 4 we will use the results of
Chapter 2.

1f PX{TO =t} = 0 and PO(Ta = 0} = 1 then from the strong
Markov property PX(f: int £(s) = 0} = 0 so using Theorem 2.2 gives
Gssst

x
w n{N > nt ) = (VX[T‘ > t) whenever x - x>0 and t = t> 0.
n n 4] n n

From (9)

Q. - . 0 0

P{T, =0} 2 lim P(V (t) < 0} = P{V (1) < 0) (16)

0
-0
. 0,0 . .

so if P {V (1) « 0} > 0 wusing the Blumenthal 0-1 law gives
PO(Ta = 0} =1 and the result above can be applied to conclude:

if PX(T =t} =0 ana PV'(1) <0} >0, (iv) holds. an

On the other hand, if p{v°(19\< 0} =0

0
pf inf Vo(s) >0} 2 1 - 3 PV (q) €0] =1 (18)
O=sst q,rational

0
so V 2 0 and Theorem 2.2 cannot be applied. In this case we will

use Theorem 2.4 or another trick (sce Section 4.4).

26




: i
. * i
3.2 Conditions for Tightness 1
According to Theorem 15.2 in [20], a scquence of probabhility ;
measures on D is tight if and only if the following two conditions E
: hold: i
3 (2) lim lim P {f:sup[ (O] > M) = o
i Moo noe t :
(b) if w;(é) is the quantity defined by (5) of Section 1.2 ;
4 then for each € > 0
,1 lim 1im Pn{f:w'f(ﬁ) <€) = o0 -
» o ‘1
: Because of the complexity of the definition of u;'f the second
1
4 -
k| condition is usually difficult to verify. In this section we will 2
1 assume (i)-(iv) hold and develop equivalent conditions, which are
1
X easier to check in our special case, by examining the behavior of i
_f}' the path before and after hitting [€,=). ~.
4' If Te(f) > & we can let t, = Te(f) in the definition of Wi ‘
% and obtain
RACIE N u;(ﬁ;'rsyl) (1) |
¢ N
i When f =V~ the last expression is the "D modulus of continuity”
K |
' of a process which starts from a height \’I'(TE A 1) and is conditioned 5
) .
. T Yy .
i to stay positive for (I—FE) time units, Since we have assumed (iv), g
x ] i
l the results of Section 2 show that (V "IN > n) = (V'\"l‘o > 1) when ;i
n ) ;
Xn - x> 0 and using the inequality above we can prove the following. i
S 2
. % :
‘*f Note: Throughout this section we will assume that §, the exponent in
‘° (2) of section 3.1, is positive. g
P 27 4




Theorem 3. v: is tight if and only if the following two

conditions hold

(3a) for some € >0 1lim lim p{v:(Ta) >M) = 0
Moo now
(3b) for all € >0 1lim lim P(T, (v:) <8} = o

60 noo €
That is, we have tightness if the conditioning does not make the

process jump too high or leave zero too fast.

Proof.

The conditions are necessary since they follow from (a) and (b)

above. To prove sufficiency define the post-TE process

+
X () = (v[n(T€+_)]/cn[T€s 1, N> n)

Since vn is a Markov chain

+ d
X () = (v[n_]/cnlv0 =Y ,T > L)
where
Yy = (vnTE/Cn, Te< 1,N>n)
and
L =

(I_TFJ Te s 1,N>n)

From Prohorov’s theorem ([20] Theorems 6.1 and 6.2) a sequcnce of
probability measures on D 1is tight if and only if every subsequence
has a further subsequence which converges weakly, so it is enough to
show that for any subsequence (a) and (b) hold for some further

subsequence.
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Let €> 0. If P’ &"I‘E:‘: 1) » 0 as k-, = then (a) and (b)
"k
hold so it suffices to consider subscquences for which

lim P; [TE;ﬁ 1} > 0. In this case the tightness of Yn follows from

k> k K
(3a). Since 0 < L =<1, (Y ,L ) 1is tight und so there is o
n n 'n
k k
sequence of integers mj = t ® so that (Ym , L ) = (Y,L).
. . ' m
J J J

Let h be a bounded continuous function from D to R. If
X + . .
g (x,0) = E(h(Vn)lTO > t) then E(h(X))) = E(g (Y ,L)). Using (iv)
and the results of Scction 2 we have that as xn - x> 0 and

t > t=0
n

g, (x ,t) > g(x,t) = EGM|VO) = x,T

0>V

so from Theorem 2.1 Eh(X+ ) » Eg(Y,L). From this we can conclude
My

+

X = vo =y,

*
0> L), a process we will denote by V
k

* —_— + *
Since X; =V using Theorem 1.1 gives that 1lim Eh(Xm ) = Eh(V )
k Kk k

when h is bounded and upper semicontinuous. Applying this result with

h(f) = 1 A (sup f(t) - (M-l))+ (sce (3) of Section 1.2) and
t

h(f)

i

w;(é) A 1 (sce Theorem 1.2) and using the obvious inequalities

sup f(t) < € v sup f(t)
N T

+ / -~ + ., < + o .m - ~ e
PLi(B) >€) = P (T < 6] + P {uw(5;Tg,1) »€|Tg < 1]

completes the proof.
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Condition (3a) may be difficult to check directly becausc it
j +
involves estimating the value of Vn at a random time. Using the

scaling relationship and the Markov property we have for t < 1 that

P(V(1) > K[V(t) = x) PV (1-t) > K}

P{ le((l—t)x-G) > K)

If §> 0 then from the right continuity of V1 as x -» o the

above converges to 1 uniformly for t ¢[0,1] so

lim P{V(1) > K|V(T€) >M} = 1
Moo

From scaling and the right continuity of V1
x . 1
lim P7{T, > 1} = 1lim P¥T.> t}] = 1
o 0
X tio

so the same statement holds for the process V+. This suggests:
Theorem 4. A sufficient condition for (3a) is

lim 1im P{V;(l) >K = 0
Koo noo

Remark. From (a) it is clear that this is necessary for tightness. An
argument similar to that given in the proof below will show that this is

necessary for (3a).

Proof.

Using the Markov property, if € <K

+ n_ . .+
P[Vn(l) > K} = E[Tgs 1;qK(Vn(’I‘€),1-T€)]

i

i




n
where q,(x,t) = P(V_ (1) > K|V (1-t) = x,T. > 1). From (iv) and
K n n 0

oy A P sk S comh 1

Theorem 1.1, if X > x>0 and Ln - te 0

n
i t
qK(xn, n) > q(x,t)

where qK(x,t) = P(VQ) > K'V(l—t) =x,T.>1) so for u=<]l

0

T iyt - + -1/6 n .+ _
lim P{V_(1) > K} 2 lim E[Vn(Tg) > 2Ku s (V, (T 1 TE?]

0 n-»

1/4 -1/§

}

> [int{qu(x,s):x 2 2ku "",0 < s < 1) Lim P{V:(Te) > 2Ku

oo

From scaling qK(x,t) = ch(xc,tcé) so if 2K/x < 1,

qK(x,t) = qK(ZK,t(ZK/x)ﬁ) and from above

—1/61

T + R — oyt
Lim P{V (1) > K} 2 [ inf qK(zx,s)] Iim P{V (1) > 2Ku

oo O<s<u noo

P(V (s) > K[V _(0) = 2K) - P(T, = s|[V (0) = 2K)

1> qK(ZK,S) >
P(T) > s[/ (0) = 2K)

.

e L paa " g -
et e e e e st

Letting u - 0 gives

1im P(VI(1) 2 XK} 2 1im Tim PIVI(TO) > M)
n n €
N Mo® nyo

and letting K- o gives the desired result.

From Theorem 5 if we know that V:(l) converges then (3a) is

satisfied. The next theorem gives a sufficient condition for (3b).
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Theorem 5. Lect Pn be the probability mecasures induced on

*
D[-1,1] by V;(t v 0). If (3a) holds (P ,nz 1} is tight. If
* *
in addition, for every P  which is the limit of a subsequence P

k
* +
we have P [f:£(0) # £(0-))} = 0 then {Pn,n = 1)} is tight.
Proof.

For all f e D{-1,1] which are constant on [-1,0) if § <1

we have
’ - ! .

wf(ﬁ, 1,1) ST v Wf(b,Te,l)
From this

p*{ ‘(5:-1,1) ] < p*{w’(a T_.,1) ]

n wf 6!-‘ y >€ n f ’ E’ >€
so using the proof of Theorem 3 we see that (3a) is sufficient for
tightness in D{-1,1].

To prove the other result we note that by Prohorov’s theorem it

* * -+ -+ *
is sufficient to show that if Pn = P then Pn > P =Pnx
k k
% is the natural projection from D[-1,1] to D[0,1]. If

where

h:b[0,1] » R has P+th) =0 where A is the set of discontinuities

* *
of h then P [f:f(0) # £(0-) = 0} implies that P Cﬁhoﬂ) = 0. The

desired result now follows from Billingsley’s form of the continuous

mapping theorem ([20], Theorem 5.2): Pn =» P if and only if
-1 ~1 .
Pnh = Ph for each measureable real valued function h with

P(Ah) = 0.

Combining the conclusions of Theorems 3,4, and 5 gives the following

result.
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Theorem 6. v; is tight if and only if

. Sa bk

(6a) 1im Tim P(VI(1) > K} = o
Kse neseo n

(6b) 1lim lim P{V:(t) > 6} = 0 for each & > 0.
t50 noew

From Theorem 6 if we know that the finitc dimensional distributions
of V; converge to those of a process V* with P(V*(O) =0} =1,
then the sequence is tight.

In Theorem 10 below we will give conditions which imply that
if V: is tight then the limit is 1lim (VX!T0 > 1) (assuming this

x40
exists) so in cases when the convergence of finite dimensional
distributions is not known we would like to check that the sequence
is tight without computing the limit of the distributions.

One way of doing this (which we will use in Section 4.3) is
to observe that if V;k(t v 0) converges almost surely (as a
sequence of random clements of D[~1,1]) to a process V* with
P{V*(O) > 2§} = p> 0 for some § > 0, then from the definition of the
metric for D[-1,1], lim P{V: (Tﬁ)—é > 6} = p. Using Theorem 5 and

k

k
Lemma 2.1 now gives:

+
Theorem 7. I1f for each € > O (V;(Tt? -€) 2 0 then V:

is tight.
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3.3 Convergence of Finite Dimensional Distributions

In this section we will assume V; is tight and derive
+
conditions for Vn to converge. Our method of proof is not the usual
one suggested by the title of this section, however. We will prove

convergence by showing that all convergent subsequences have the same

limit. 3

The first step is to consider what processes can occur as limits i

of the V:. From (i)-(iv) and the results of Section 2, if ;

1 X > x >0 (vznlN'> n) = (foTb > 1). Letting X, 80 to zero very ;

slowly we see that if V: converges for all X, > 0 then

lim (Vx[Tb > 1) exists and is the limit process for any x - 0.
x10
Assuming 1lim (Vx|Tb > 1) exists and writing (VO|Tb > t) for
x{0

lim (VX[T0 > t) we can give a simple formula for the processes which
xi{0 4

- +
can occur as limits of subsequences of V .
n

L S

*
Theorem 8. If V; =V then there are random variables
* * k * *
t ¢(0,1] and x =20 with P{t = 0,x > 0) = 0 so that

x* * *
* o O Cot)]Ty > 1-t) ¢V

*
v () 1{,C

R S,

ey, A DL

j Remark. This characterization shows that if (VElT0 > 1) > 0 as i

€5 0 then 0 1is the only possible limit.

1 Proof. ?

* *
From the proof of Theorem 3.3 V (T€SV )+t) behaves like V

* *
l starting from V (TE) and conditioned to stay positive for 1—T€fv )

34
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*
units of time. As g decreases, TE(V ) does not increase so as
* ] * *
€l 0, TEKV ) converges to a limit t . Since V is right contin-
* *
uous this means V (Qa) converges to a limit x
Under the hypothesis of Theorem 8, (x,t) - (VxlT0 > t) is a

continuous function from [O0,@)x(0,®) to D[0,1] so using the
E 3

* * ; *
continuous mapping theorem we see that V (TEﬁV Y+t) = (VY [T > 1-t ).

0

* . * *
Since 0 <V <« ¢ on LO,TgﬂV )) this shows V has the representa-

tion given by (1).

* * *

To see that P{t = 0,x > 0} = 0 observe that since V; =V

+ * * k

in D, x =V (0)=>V (0) so V (0) = 0.
n n

It is easy but tedious to show that all the processes given by
formula (1) are possible limits. In the next example we show how to
%
,X = x} = pF(x) where

* *
do this if P{t = 0} = 1-p and P{t =t

p,t €(0,1] and F is a distribution with F(0-)

11

0. We leave the
general construction to the reader’s imagination.

Example. Let v, be an integer valued Markov chain (say,
a Bernoulli random walk) with satisfies (i)-(iv) and has Vz = vt
for all X, 0.

Let [rij,O < i< j<w®] be acollection of distinct numbers
taken from (0,1) and let leo. Let vé be the Markov chain defined
on 7y {rij,O .1 < j € o} which makes the samc transitions on the

integers as vn and is defined on the other states by the following

rules




. ] e i e il .

. o T Y b h? -
j ] = { [ rl = o 3 - -
ifi=20 P,\v1 =1 ’\0 XO,j) J-p
‘o - _
P{v1 rl,J ]vo rO,)) = p
. . . o - A -
if 0 <i £ [jtj-1 Plv] =0 ]vo_rij Ry
’ J
V.= =
Plv Yie1,5) 707 "1 ) A5
i i = - ! = = = -2
if i = [jt]-1 P{v; =0 |v Ty } 1 Ay ;
P{v! = e v = A.P
! h,Jj l 0 ij J }\J hj
where for each j, ehj h > 1 1is an increasing sequence of positive .

integers and ‘ij h2 1 1is a nonnegative sequence with

2 Pp s~ 1 so that if
1l
F.(t) = 2 o .
J h,e .<c t J
hj n
then Fj = F as j 5 o. ~ 4

Having identified the possible limits of subsequences of

X
(VnnfTb > 1) the next step in solving problem (a) is to determine for
X
* *
which V there is a Markov chain v, so that (VnanO > 1) >V for
all x_ - O. 3
n -
If 1lim Pn (N> n} >0 for some X, - 0 then it is easy to show .

r

+ 0
that a subsequence of Vn converges to V so in this case if the
k

fagph fo f

convergence takes place in the sense of (a) the conditioning will have

no effect.

A AR oot ik, 3 B R
2
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To characterize the limits which can occur when (v) holds we

will investigate the convergence in the case chn = a. In this

instance the limit process results from conditioning and scaling a

single sequence of random varia»les so there is a scaling relationship

L3
which allows us tc compute the distribution of V from that of

*
vV ‘1),

Theorem 9. Let x ¢ = a, Qa(-) = P(-’vO =a). If

nn

+ +
Vn(l) = 0 then Vn converges to a process which is = 0. If

+ * .o ¥ a &
Vn(l) =y with P{v =0} <1 then Q{N>n' =n VLa(n). In the

second cagse if (v) holds then the finite dimensional distributions

of {V;(s), 0 <s <1} converge to those of a nonhomogeneous Markov

4+
process V which has

P(V+(t)edy) t_ﬁp(tvv*edy)Py{To > 1-t) (2)

d
an . . P(Vx(t—s)cdy,TO > t-s)PY! T, > 1-t)
PV (t)edylV (s) = x)

X . N
PT 1-
{ 0 > St

+ +
If V:(t) =0 as t 5 0 then VZ is tight and Vn =V

Procft.

*
The first result is obvious: ohserve that if V  is given by (1)

* *
then, P(V (tis) > 0

*
Vo(t) = %) = POV (s) > 0|T, > 1-t) =1 o V
does no' hit zero after it hits a positive level,

To prove the second statement note that if X _. 0

*
Note: vy = 1/6.

37
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a
3 {1: > QsMn) - p Q' (v_(Dedx|N > n)P(N > An|v) = xc ) (@)
Q" (N> n) (0,=)
and from the hypothesis as x - x 2 0 dx(x ) = P(N > anv =xc.)
n n'n 0 nn
converges to PX{TO >N} = dk(x)-
A + * *

dM°(x) >0 for x>0 so if Vn(l) = v with P{v=0}]<1
then from Theorem 2.1 Qa{N > (1+X)n]/Qa{N > n} converges to a
positive limit. If we let p(1+A) denote the value of this limit
then since p(st) = p(s)p(t), p 1is measureable, and p(s) <1 for
s 2 1 we can conclude p(s) = s_B for some R = 0.

This shows that Qa{N > n} has the indicated form. To prove
that the finite dimensional distributions of V; converge we will

use this fact and the following formula:

f k=21,0<t

R < iti
1 tk 1 and yl, Yy are positive
+ N +
P{Vn(tl Sy, - Vn(tk) < yk}
Q*(N > nt ) o t
= — J Q‘(t;Yvnt (DedxIN > nt )¥ " (x) (5)
Q(N>n} (0] 1
where
yloo : _ i = 3
" PV (t)) < y,...V (£,) £y, infV () > 0[V (t)) = x)
tISSSI

From (iv) and the results of Chapter 2 if X, > X >0

t1 tl

W = > < = Y i S v =
. (xn) - ¥ (x) P(V(tz) Yoo V(tk) Yy inf V(s) > 0] (tl) x)

tlgssl

whenever the yi are all continuity points of the distributions of the
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*

V(ti)’ so if we can show P{+ = 0] = 0 we can use Theorem 2.1 to

conclude

+ + -2 ] v * .
< Y < : : c
PV (t)) <y, ) Sy st j P(tfv cdx) ¥ (x)
(0,y,] 1
which shows the limit process has the indicated form.

. ) *
Let Gn(x) = P{VZ(t) < xt, G(x) P{v < x}. From (iv) and

I}

Theorem 2.1

[ o @08 5 [ aaghe
(0,) 'k k [0,2)

edid ) s

Since Qa{N > (1+\)n}/Qa{N > n} 5 (1+R)_E using (3) gives

SO R (GO Y
[0

Now (v) implies dx(O) = 0 and we always have 6x(x) < 1 so this

—fd
means that G(0) < 1-(1+\) i for all X > 0 or G() = 0.

e Taae enml

To complete the proof of Theorem 9, we observe that the last !

statement is an immediate consequence of Th=orems 3.4 and 3.5. :

Combining the results of Theorems 8 and 9 we obscerve that if (i)-
+
(v) hold and Vn converges in the sense

specified by problem (a)

then the limit is c¢ither = 0 or = 0 at cach t

> 0 so there are

X
only two possible limiis (assuming lim (V |Tb > 1) exists).

x-30
At this point we arc ready to consider conditions for convergence
to cach of thesec limits but therec is not really much to say. The

next result, which summarizes our main conclusions is an easy consequence

of Theorems 8 and 9.

39




Theorem 10. Let Vi be a Markov chair for which (i)-(iv) hold.

Let X, - 0 and suppose V; is tight, V; > 0 1if and only if

+
P ) max V’n(s) >€3y > 0 for all € > 0 (6)
0<s<1

1f V' = lim (VF|T, > 1) exists and is # 0 then V) = V' if and

x>0
only if
1im lim P{V:(t) >6) = 1 forall t=>0 (7)
610 noo
1f X,y = 2 and (v) holds then condition (7) is equivalent to

Q%N > n) = n-BLa(n).

The first result is trivial. To prove the last two it is
sufficient to show that the condition given in each case is
equivalent to assuming that for all subsequential limits y*

PfV*(t) > 0} =1 for all t = 0. VYor the sccond result this
claim is obvious. For the third it follows from the lasti computations

in the proof of Thecorem 9.
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Chapter 4

EXAMPLES AND EXTENSIONS

4.1 Random Walks
If Xl,Xz... is a sequence of independent and identically

X n>1 defines a

distributed random variables, S =8 + ,
n n-1 n

random walk. Necessary and sufficient conditions for the convergence
of (S - b)/a are known (cf. [29], Chapter 7). 1In this section
we will use some of these results to show that if Sn/an converges
in distribution to G then (i)-(iv) hold and the results of

Chapter 3 can be applied to prove the appropriate conditioned limit

theorems.

Theorem 1. For the nondegenerate distribution G to be the

limit of some sequence of normalized sums (Sn—bn)/an it is

X

necessary and sufficient that it be stable, that is, if X,Xl,..A K

are independent and have distribution G then there are constants

’ 1
ak > 0 and bk such that

d rr ’
X1 + ...+ Xk = ak“ + bk

i, 06X
Theorem 2. #(8) = Eehe is the characteristic function of a

stable law if and only if

log #(a) = i\g - c]a! 1 + bw (8)6/]e]] 6 £8 (1)

A
—

where 0 <= 2, -1<b c 2 0 and

s tan(n/2) if o#1
wa(e)
(<2/ﬂ)log tg] if a =1

©immiam A L3 s

= wsdn S

Akt e

i
i
|
i
b
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4
4
3
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2 a 1is called the index of the stable law, b is a shape parameter, 4
A gives the drift, and ¢ 1is a scaling constant. j
: - 3
A
Definition. A distribution F is in the domain of attraction of ;
E 4 a (nondegenerate) distribution G if there are constants an > 0, bn j
n* n*
i so that F (anx + bn) = G(x). (Here F is the n-fold convolution
of F.)
Theorem 3. The distribution F belongs to the domain of attrac-
3 tion of a normal law (@ = 2) if and only if as n - o
3 5
n? [ F(dx)/ [ x“F(dx) 5 0
I£t>n lxl<h
| F belongs to the domain of attraction of a stable law of index
i |
H 0<a<2 if and only if
o
E [1-F(X)]/[1-F(x)+F(-x)] - P as x -» ®
3 and
! I-F()+F(-x) = x YL(x)
K-
-
il From the proof of this result in [29], pp. 175-180 we can conclude
2 ) l/CLL i
: the scaling constants an are of the form n (n) and satisfy 4
, € -
' ’"c'x““ if <2 \
5 I
, \ n{1-F(a x)+F(-a_x)] {

{i -’l 0 if o= 2

| 42
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The centering constants can be chosen to be

nEX, if 1<ax 2
E | nE(-a VXAa ) if a =1 (see [24], p. 315)
0 if 0<u<1

From Theorem 3 it is immediate that if S0 = 0 and
(sn—bn)/an = Y then the finite dimensional distributions of
' 1 = - b - *
; Vn(t) (S[nt] [nt])/an converge Skorohod has shown (Theorem 2.7

in [32]) that there is also weak convergence.

Theorem 4. If Sn is a random walk and (Sn-bn)/an =Y
§ z (nondegenerate} then Vn = V a process with stationary independent

increments which has Vo(l) d Y.

,. )
.l

If 1lim bn/an =y (finite) the centering is unnecessary and
Ny

DT

Sn/an satisfies (i)-(ii).

"

The next step is to check that (iii) holds. To do this we

oo

" 5 3
[ VI VO L

observe that if Py{Tb > t} = 0 for some positive y then from (8)

of Section 3.1, (Vx(t),t < To} is decreasing. Since V has independent

X .
increments this means (V (t),t > O} is decreasing and so

PVY(t) s 0) = 1.

Conditions for stable processes to have this property are well-

S

known. Using results from [28)] we see that if PY(T.> t} =0 then

and A< 0 in (1). To complete the proof we will ;:

0

Vs,

0<a<1, b=-1

¥

CIa)

use the scaling relationship to show that none of these processes can )

occur as limits in (ii). g




0
Let dt(e) = E exp(igV (t)). Since Vo has stationary independent

t 0 d 0
increments 6t(e) = 61(6) . From scaling V (t) = t'V (1) so

dt(e) = dl(tye). Using t log dl(e) = log dl(t\’e) in (1) gives
For limits of sn/an, A=0 if @g#1 and b=0ifag=1 (2)

Since these conditions are incompatible with ‘he ones given above we
have shown that (iii) holds.

To prove that (iv) holds we start by observing that stable laws
have continuous distributions ([29], p. 183) so
Px[Tb= t} < P{Vx(t) =0} =0. If P{Vo(l) < 0} > 0 then the results
of Section 3.1 can be applied to give (iv). 1If P{VO(l) > 0} =1 then
Px{TO >t} =1 for all x>0 and (iv) followa from remarks sfter
Theorem 2.4,

Using (14) of Section 3.1 we see that (v) is satisfied in the
first case but not in the second. Having established that (i)-(v)

hold when V is not increasing, the next step is to give conditions

+
for the sequence Vn to be tight.

*
Theorem 5. If x1 has a distribution F so that F. (cn') = G,

a stable law with G(0) € 1 then V; is tight for x = 0.

Remark. If G(0) = 1, V 1is decreasing so (VE|T0 > 1) <€ and
(VEIT0 > 1) = 0 as €(0. From the Remark after Theorem 3.8, we see

that 0 1is the only possible limit in this case.

Proof.
The proof will be given in three lemmas, each of which assumes the

hypothesis of Theorem 5 and uses the notation of Theorem 3.9.
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Lemma 1. If G(0) =B <1 then QO{N'> n) = n'BL(n),

Proof.
Since stable laws have continuous distributions
0
lim Q {sk > 0} = 1-B. By a formula due to Spitzer ([33], p. 330) if

ks

Sk is a random walk then

o 0 £
2R {N> njt" = exp( — P[S >0})
k k
n=0 k=1

Writing 6(t) for the generating function of QO{N'> n} and factoring

the right hand side gives

K

p(t) = (1-t)P exp ( (p(s, > 0} - (1-5)%

® k

t

Now L(1/1-t) = exp (QD i ak> is slowly varying whenever 1lim a, = 0
k=1 ka®

(for a proof see [15], p. 1159) so applying a Tauberian theorem
([24], p. 447) gives
n 1-¢
L P(N>m) = n 'L(n)
m=1

Since P{N > m] is a decreasing function of m,6 applying a generaliza-
tion of Landau’s theorem ([24], p. 446) gives
l n
lim P(N>n]/ = 2 p(N>k}] = 1-p

ST k=1

so if A<1, P[(N>n) =n" L.

'
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Lemma 2. Condition (3a) of Theorem 3.3 is satisfied whenever
0
the limit process has P{V (1) > 0} > 0. If g = 2, we have in

’

+
addition that (V;(TE)- €) = 0 so tightness follows from Theorem 3.7.

Proof.

17 y

= - . = i :f i M 3 1 =
Let Xi S, 8y Let " in {1Sn.Xi/cn<> y}, with In ©

if the set is empty.

n
P(N >»n,1i <) € L P(N> i-1 Ii = i}P{Iz = i)
i=1

Given Ii =1, xl,...xi 1 are independent and have common distribution

function Hy(x) = (F(x)/F(ycn))A 1. Now Hy(x) > F(x) for all x so

if Ul,Uz...Ui__1 are independent random variables each with a uniform

distribution on (0,1) then

(x 1

vy -
X Pl =D | (U), . H T 40

na

-1
(F "(u),

A

-1
S S ) .

where the equalities are between distributions and the inequality holds
2

y almost surely. From this it is clear that P{N > i—l!Iz = i}_s P{N > i-1}.

Using this in the first inequality we get

n
Yy ~—\PN>1_1} y _ .
P(In < w’N > n} < 521 PN = n) P[In = i)

fa:maa €Lt

Bt Sbarhia ) i o “‘,'f :‘-4-‘,

Now P{N > n} = n-BL(n) and P[Ii =i} < P{X1 > ycn} S0
n -

i fL(n)

i=1

P1Y €o|N>n) € 5 n(1-F(yc ))
n n(n ,L(n) n

el AP S P i 3 s N B A ol
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3
‘
4 1
: u(x) = [x+1]_BL([x+1]) is regularly varying with exponent > -1, so
from Karamata’'s theorem
' n -8 n
: > i FL(M) [ utax
N = 0
‘ = l-B = > 1/1-8
) n(n PL()) nu(n)
3 From Theorem 3 if 0 < < 2 4
. 1-F(x) E
1 —_——— = :
M TR GO+ (-x) pel0,1] 1
; - . . .
and 1lim n[l—F(cny)+F(—cny)] = ey so in this case ,
13

noy®

lim P{IK <'w,Nj> n} < pcy"a/(l—a). From this we get

N
lim 1im P[V;(TE) > y+€) < lim lim P{Ii <w|N>n) = 0
Yo® D Fo No®

so (3a) is satisfied for 0 <O < 2. x

To prove the result for « = 2 we observe that from above

1im P{I§'< m’N’> n} < 2 1lim n(l—F(ycn))
nso nyo

+
so using Theorem 3 gives (Vn(TE) - €)+ = 0 and applying Theorem 3.7
gives that the sequence is tight when o = 2. iﬂ

} To complete the tightness proof when 0 < a < 2 we use Theorem 3.5

and the following.
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] Lemma 3. lim 1im p(v;(u) >y} = o.
? ull noe
1 Proof.

If k = n-[nst] then

c
nt snt
1 P(Vn(st) >y, N>n} = (yfm;><—-c-r: Vnt(m)edx,N> snt)P(N> kn Vo~ xcn)

If m =nt - [nst] we have

snt

c P(—E—-— Vnt(m)edx,N > snt)P(N > mn’ Vo© xcn)
n i R I

n

P{N > nt)

. Using the last two equations gives

. P(N>k_| v =xc )
: + _ P{N> nt] “nt _+ [snt ‘ n' "0 "'n
i PV, (st) >y} = Hws o) (yfmﬁ(”g; Vnt(r;zj)ﬁdx)P(N>mn!VO=XCn)

I

< P{N>nt}Pfirﬁv+ (snt) >y$ !

P(N > n) ?c nt\[nt]

n

+-
From Lemma and Theorem 3.5, Vn is tight in 1)[_—1,1] so for any

3+ *
subsequence there is a further subsequence with V =V in D[-1,1].
k .
* *
Since for any Sh 10 we can pick a t <1 with P{V (smt) AV (smt—)

|
k for some m 21) = 0 the above gives (for appropriate values of y)
1 — + - ¥ :
E‘ﬂ tim 1im P{'v'n(u) >yl st B 1im P(tl/,v (st) > y) 3
ni0 nye s40 ‘
$ a . .
} = ¢ rP(V (0) > yt 1/(1] §
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Since P{V (0) > z] < lim P{If1 < w{N > n} using an inequality from the J
[Hm

proof of Lemma 2 gives x

-1 ¢ 1-
/a eyt B

t’ﬂp{v*(o) > yt ] <

and we can complete the proof by letting tlO0.

At this point we have given conditions for V; to be tight and

0
Q (N> n} to be regularly varying so from Theorem 3.10 to prove the
conditional l1imit theorem in the case G(O)e(O,l) it only remains to
x 3
show 1lim (V ,T0> 1) exists.
x40 1
1
k

Theorem 6. If V is a stable process which can occur as a limit

in (1i) then lim (VV|T,> 1) exists. : ;
xi0 3
Proof.

If V is decreasing or PX{TO >~ 1} =1 then the result is trivial

g for what follows we will assume Px{T > t] #1 and hence

0
PUT. > 1}i0 as  x{0.

0
! €
Let R() =0 and for k> 0
c € .0 € 0
= i t R™: t+R -V (t) = -
R\ g inf{t > oV ( k) (t) €]
;0 , . € € .
Since V has independent increments Rk+1_ Rk’ k = 0 are independent

and identically distributed. Since P[Rsl' <t} = PE{TO <t} - 1 as

t ., ®» each RE;'( <e P almost surely.

Let K¢ = inf{k 21;R§ - R§_1> 1}. From (iii), P{Ri’> 1} = i
0
PE{TO> 1} >0 so Mc and S¢ = RK are finite P almost surely.
c
0
Let UE‘(t) = €+ [\.’O(Se + t) - VO(SE)]. Since V  has independent
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g .

N . 1
increments it follows from tho construction that Ug'i (VEfTO > 1)

(see Lemma 2 of Scction 4.3 for a detailed procf of a similar

;
; result). To show that (VE,T0 > 1) converges weakly as €10 we will f
r E
. € € 0 . 3
3 show § and U converge P almost surcly. 3
| : :
B 0
' Let m(t) = inf V' (s). Let S = inf{t:m(t) = m(t+1)}. Since

O<sst

0 0
i | we have assumed V is not decreasing P{V (t) = m(t)] <1 and

Em fm Em
that either 8§ 2 t for all m or S <t for all m. If S8 "|t,

;
w 0
;f- it follows from (iii) that P {S < ®) = 1.
E. ) £ 0 1
E Lemma 1. lim S" 2 S, P almost surely.
2 €l0
b ;
[ .
b
;j Proof.
- €m
i Suppose S - t <« o, By choosing a subsequence we can guarantee
|
]
!

0 €
it follows from the right continuity of V and the definition of S m o3

that m(t) = m(t+1) so S < t.

To prove S < t in the second case obscerve that if §> 0 and

€
t -8 "<s

€ €
e o= int Vs "y o) - voE™

O<ss<] .'

-~

ST TR T TR AT T T T R A g e T TR e R
/

£
< [ int vo(us)] -vost™

i: 0<s71-§

] ) B~
! 5 [ int Vo(t+s)] - vV 3
? 0<s<1-§ R
| .
3 so m(t) = m({t+1-§) for all § = O. i
r .
; . 0 7y
) To conclude m(t) = m(t+1) it suffices to show V (t+l) = X
1. 0 €0 .

V ((t+1)-). To do this we ohserve max (8 + 1) is an increasing

] lemsn
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sequence of stopping times which are less than t+l1 so the desired

conclusion follows from the'quasi left continuity'of V (see [22],

p. 45 and Exercise 1.9.14).

— 0
Lemma 2. 1lim Se <S P almost surely.
€10

Proof.

0 E
Let X = m(S). The first step is to show X = V (§-) PO almost E-

surely. To do this we observe:

(a) If T is a positive random variable and § > O then there

# T,VO(T-) > VO(T)} < § and *

?, is a stopping time QG so that P[Q6

(b) if Q 1is a stopping time and PO{T; = 0] =1 then

p{ inf f(s) = f(Q)} =0 so P{S=Q} =0.

€

—_ 0
shows 1lim S— < S P almost surely.

€10

Q<s<Q+1 )
| Now R§+l is the first time m(t) - m(Ri) < -t so we have for all
b € there is a X. so that VO(RE,)E[X -¢€ ,X]. Since K_ < K. this
€ Ke ? € €
4 -
i

0
Having shown Se -» S, to show Ue-a U=V (s+tt), we need to prove

0 0
V' (S) = V (S-). Although this is obvious the details arve tedious to

p ¢ write out so we will refer the reader to Lemma 3.2 of [31] to complete

the proof.

Remark. Although this completes the proof of the conditioned limit

theorem in the case G(0)e(0,1), our solution is still somewhat incon- ' 3

plete because we have not given the distribution of the limit. If V is

Brownian motion the formulas can be found in [26]. I1If V 1s a stable :Aﬁ

process, however, the distribution of the 1limit is known only in one

special case (see Section 4.5).
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4.2 Branching Process

Let z .02 0 denote the number of particles in the nth genera-
tion of a Galton Watson process with zg = 1 and particle production
governed by the probability distribution {pi,i=0,1,2...). (For a
detailed definition consult the first few pages of [34] or [35].)
[o0]

Let f(s) = Z:pis1 be the generating function of Zl and for each
i=0

nz 2 let £ (s) = f(fn_l(s)) be the generating function of z,

Kesten, Ney, and Spitzer ([34], p. 19) have shown that

2
Theorem 1. If Ez1 =1 and E(zl—l) = 2X\7 (0 ,=) then

1 1 17
tim o [l-fn(s) - T-—s:l =\ 1)

n->w

uniformly for 0 < s < 1.
Setting s = 0 1in (1) and noting that P{zn > 0} = l—fn(O) we

obtain the following formula for P[zn > 0} .

-1
Theorem 2. As n - ® szn > 0} ~ (M) (2)
Another immediate conscquence of Theorem 1 is the following
conditioned 1limit theorem.
Theorem 3. lim P(zn/nkj> xlzn > 0] = e * (3)
Ny
Proof.
—)zn/nx
E'e ,Zn > 0)
-an/n\ ‘
= E(c 7 > 0)/E(l;zn > 0) ;
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(s (e—O/nx)

n

1l

~C/n\

= 1 -( - f (e M/ - £ (0))
n n
From (1) 1lim [n(l—fn(e-u/n)\))]—1 =N+ lim [n(l—o—ﬁ/n)\)}_l and from
e NS .

(2) 1im n(l-fn(O)) = 1/\ so
Ny
~1z_/n\
Jjim (e n ]z > 0)
oo n

which completes the proof.

Using the last two results w

\zn/nklzoz yan). Since the v

we have from Theorem 2 that 1f Y

which have offspring alive &t time
bution with mean v.

vz _/n\
lim E(e ,z =y \n) =
0 n
Ny

Using the Markov property and Theorem 2.1 it is easy to compute that the

n
finite dimensional distributions of Zn = (zfn_]/nkfzoz ern) converge
L )

(a result due to Lamperti

T,

5

I

n

Using Theorem 3 now grve s thar

(36], Theorem 2.5).

. ) YR oD I A

- fn(O))/(l - 1,(0))

. 1 R
1 - (1,2 =y 1/ .41

Tt Thos Limirt g

CTETOIRTER NS TR AR AN IO

tends to e g B

v f v oo v 2 0
n

v

shown that the sequence is tight so we have the following.

Theorem 4. If Y, 2 ¥ =20

then

y

Znn = (Z[Z(O) = y) where Z

a nonnegative diffusion with transition probahilitics satisfying

"

| ™Y P(Z(t+s)edy]Z(s) = x)

53

exp (-xt/1+rt)

g o) ancestors

viasen distri-

exp (v /140)

In [37], Lindvaal has

rdsaiaanso i T i

.
p
Y
}

i

ettt e

is




B RIS SIT = R ia A AnS AR

for all nonnegative x,¢ . and ot

3
3
Observe that 0 is an uhsorbing state so i
4
. i
Xeo 1 T ; ) Tl i
P 110> 1 [ \Z(l.) > U - lee T (6)
and we have that (1ii1) holde.  ¥From the remorks after Theorom O
X
n. N VAt
P ‘N>t 1 o 1-¢ when 500 0 X e 0 wne 1 0w (0w (1v)
n n n 1
and (v) hold.
1
i
At this point we have complete:l our prepaiafior ang can apply !
Theorem 3.9 to conclude:
+ IS BN v
Theorem 5. Z -« (z- -,/\.,nfz =1,z > 0) - (Z 172 () ~ 0) where |
—_— n rncg 0 n i

+ . .
Z is a Markov process with

P(Z"-(t)‘ dx) = r-z(;x/(‘( 1-¢ 7 (-0 ]

i
:
and .z
E |
2 - (xiy) (tes) o (v ()R :
+ + -2 = (x+v) S (t-8) 0 (G- -
P (Dedy] 27 (8) = ) = a(rmg) ol UVILETS) S At S
ko2 e "
-y/1-1
O —
) -x/1-5
1 - e
Proof.
From Theorem 3.9 we have that the tinite dimencional distributions
N
of Zn converge.  To obtain the formulas given above from those in ; A
4
Section 3.3 use (2), (3), and () of this soction and note that from ‘!’1 3
S
the discussion following Theorem 3 g ;
P(Z(t+s)cdy , Z(1+5) = O(Z(:r\/ = x) %

FoaF -1 k-1
Nt (_f (v 1) p-—y/t)
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To prove that the sequence is tight we have to check that for the
3.
distributions given above Z (t) = 0 as { - 0. To do this we

ohserve thaut if y> 0 and t -» 0 then

=2 -x/t
. -2 -x
P(Z+(’L) > y) < ( t e dx

¥y

-1 -y/t
t e Y - 0

PRI S

Ll

;
L
i
L
1

3

.

.

i

;

i
.

:

]

s e sty st A, adecaiiad
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4,3 Birth and Death Processes

We will call an integer valued Markov process {U(t),t = 0)
a birth and death process if starting from state j, U remains there
for a random length of time having an exponcntial distribution with

-1 . . .
mean () +u.) and upon leaving Jj, U moves to states j-1
J J
-1 -1
and j+1 with probabilities u_ (\.+u.) and .\ _.+u))
J J 3 J 3

respectively.

It is easy to see that if a birth and death process satisfies (ii)
then the limit is a strong Markov process with continuous paths, or
a diffusion. In [41], Stonc has identified which diffusions can occur
as limits in (ii) and given necessary and sufficient conditions for the
convergence of birth and death processes to these limits.

As the reader can imagine these conditions are Jdifferent when
the state space of the limit process is (- ®©) and _0,®) and in
the latter case also depend upon the naturce of the boundary at 0. To
keep things simple we will give the results first in the case the state
space is (- «) and the diffusion is regular and then consider the

other possibilities.

Definition Let ¢ = inf{t = 0:V(1) = x}. A diffusion V with
—_— X

state space (-= ,®) is regular if Px{ry < ®} >0 for all x,y.

Theorem 1. ({41], pp. 51-58) A neccssary and sufficient condition
that there exist o strictly increasing sequence Cn such that as n o5 e«
U(n')/cn converges (in the sense of (ii)) to a regular diffusion on

/u a,= 1

5 that voSe “‘heo defi 4 e )
(=o,®) is that the sequence defined by L nn~1\n-1 0 1

n6

3
3
1
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-1 Ql—l L.‘:’z—l
satisfy (xnnn) = n Ll(n) and T=n Lz(n) wherc ihe

ai > 0 and the Li have 1lim Li(xy)/Li(y) =1 for all x> 0 and
y_;co

lim L (-x)/L_(x) = d.e(0,®).
1 1 1

300
i/ ((7,1+C::'2)
In this case c, = n L(n) and the limit process is a

diffusion with scale J and speed measure is given by

( 1’1

Ax x = 0

Jx) = .
A
1
-dlAfxf x<0
04

Bx 2 x=2 0

m(x) =

a
—dzle] 2 x <0

where A and B are positive constants.

Note: To work with this theorem we will have to usc some facts
about the speed and scale measures of diffusions. A complete discussion
of this topic is given in [38], but very little of the information given
there is needed to prove our conditioned limit theorems. A readable
summary of the results we will need is given in Section 4 of [39].

v

To show that (iii) holds we observe that if P {T > t} > 0 then

0
from (8) of Section 3.1, Vy(t A TO) is decreasing for each t> 0.
Since V has continuous paths and the strong Markov property this

implies Py{fz <=} =0 for z> vy, which contradicts the assumed

regularity.

To prove (iv) we will use (17) of Section 3.1. Since V is

57




regular, VO Z 0 and it follows from the scaling relationship that
P{Vo(l) > 0}=0. To-establish thatPX{TO = t} = 0 we recall that

1td and McKean (see Section 4.11 of [38]) have shown that the transition
functions of a diffusion have densities-with respect to the speed
mcasure so

< PIVI(t) = 0] < m({0)) =0

Since V is regular PX{Tb >t} £1 and from (13) it follows

that 1lim P (T

>t} =0 for all t> 0. Since P{N> m]voz x} is
x10

0

an increasing function of x and (iv) holds using (14) gives that

(v) holds.

Having established (i)-(v) we will now prove the conditioned
limit theorem by checking the hypotheses of Theorem 3.10. The
first two steps are easy. Since (V:(TE) -e) = l/cn - 0 it is
immediate from Theorem 3.7 that V: is tight for X, 2 0. To get the
°

asymptotic formula for @ {N > n} we observe that from idO] p. 253

; -8
we have QOfN'>»n} =n "L(n) wherc A = 01/a1+@2.

To complete the proof we have to show:

Theorem 2. If V 1is a diffusion which can occur as a limit in

Theorem 1 then 1lim (VX'TO > 1) exists.
xt0

Proof.
Suppose V is defined on a probability space with s-fields

F, = g(V(s):s < t} and shift operators (g

¢ ;t 2 0}, Let S¢ =

o s ..
R -

inffs > 0:V(s) = g,V(u) > 0 for s < u s s+1} and 1lct Ze(t) = V(Sg+t).

S A

-
¥
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1
ﬂ
Lemma 1. For ¢ > 0 and all x SE “<m P almost surcly. As 3
€10 SelS0 and  Zg> Z0 PO almost surely. ?
Proof. 3
0 X k :
For € >0 1let R¢ =-1 and RE+:1.-. inf(tz Rg 41 V(O =g). ]
If y # € then from [39], p. 53:
Vil . ¢
PP{[Ra<®} = 1lim PP {1.< 1 }
€ € ~-OM
M (y-©

J) - J((y-M)

= Um S T I (Geom

Moo

so using the strong Markov property and induction gives that

PX{RE’< ©} =1 for all x and k. Now if V has no zero in

-k Kk k

[Rg,Re + 1] then S¢ < Re so
e Kk - k-1 € -
PUsc s R sg ™ Rg ) = P(T 13> 0

and hence

P S <wl = 1
For 0 < § <€, 56 < supit < SE:V(t) =81 so Sel as €.
To see that S¢ | SU note that 3
p o= Anflt-S -l:t> 8 ,V(1) =0} >0 ':f
S0 SV(SO+\U)_ Sgp = Mp for all 0 < AX<1. Since V has continuous i;

paths and  Zg(t) = V(Sg+1), Sgl0 implies Z¢ - Z,.

Having proven Lemma 1 to complete the proof of Theorem 2 it

suffices to show:

59 i
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Lemma 2. For €© > 0 ZE, and (Vellb > 1) have the same

distribution.

Proof.

Let F be a Borel subset of D. Clearly,

c oz ,"' _—_’T] Oh "‘1 *
P{ngb} P{ZEF]’SQ e + P{ZE“T’SE:> LeJ 1)
Since T is a stopping time and V a strong Markov process
P(Z.cF) = E[P(ZeeF S¢ = el ng)]
- prySey
= P{V a—.r,'r0> 1} (2)
1f S€:> e then V(s) = 0 for some se(TE,T€-+ 1]. Letting

+ 1], v(s) = 0} where <. = if the last set is

T = inf{sssc (1,7 ¢

e | S

empty, we have

P~ZeeF,S€> fe] = P{Zegl',r€< ]}
= E[1_ < =;EQ1 . )] 3)
[ c ( (ZEQHISTEJ (
On the set 77/ < @) 1. - can be written as #(e_ ) so from (3)
E LZ£€I‘} le
and the strong Markov property we get
P Z.:F 5. > ..] = (Eoé)P[T' < »)
R R € €
= P{ZEcF}(l - PQ{TO > 1)) 4)

Combining (1), (2), and (4) gives

*Note: when P is written without a superscript the indicated probability
is independent of the initial distribution.

60
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P{Z.cF] = P[VeeF T > 1) + P{Z.cF}(1 - PST = 1))
1 10 o o~
80
P({Z_eF] = P(Vg'eFIT > 1)
tee 0

which proves Lemma 2.

This completes our development for the '"regular® casce. The
next step is to determine in what other cases we can get a nontrivial
conditioned limit theorem.

To do this we observe that from (16) and (18) of Section 3.1

. 0., -~ 0 . . .
either P {TO =0} =1 or V =20 so if V is not regular there is
no loss of generality in assuming the state space isg {O,m). In

Section 3.1 we argued that if O was inaccessible from positive

levels then the limit theorem is trivial so we will assume

PX{TO > t) £ 1. In this case (13) of 3.1 implies lim PxfT0> t] =0
x10
so (12) of 3.1 gives PO{T0 =0) =1. Since P {Tgxi 0} =1 if and
only if POIVO(I) > 0} > 0 there are only boundary possibilities to
consider
(a) reflecting: PO[T+ = 0} = PO[T =0} =1

(b) absorbing: VO =0

Conditions for convergence in these cases cun be obtained from
[41]:
Theorem 3. Let [U(t),t = 0} be a birth and death process with

state space [0,1,2...}.

’

If 0 is a reflecting boundary for V then U(n')/cn » V.  and

61
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(iv) holds if and only if the sequence defined in Theorem | ohas
n

; 1 al—l mz—l

2 (xnun) == n Ll(n) and R =R L(n) where al and ul+32 are
positive and the 1L, have lim L, (Sx)/Li(e) =1 for all x> 0.

e G

g If 0 1is an absorbing boundary for V and K“ =0 in U then
;l U(n-)/cn = V and (iv) holds if and onlv if in addition to the

conditions stated above we have

s~ ulze )

lim lim f —— v (dz) = 0
3 %0 now 0 W) n
£
’ i
3 where v (x) = (vixc ) - v(c ))/(v(2c ) - v(c ¥), v(i) = 22 a. and
2 n n n n n i
. j:l
! -1
i u(i) = 7, (Ajn.) .
| /0, 40
172
Al In each case cn =n L(n) and there arc positive constants

A and B so that the 1imit process is a diffusion with scale
¥

1

J(x) - Ax x 2 0 and a spced measure wm concentrated on (0,®)
fi given Dby )
cq r)’z
- Bx if ”2 f 0
‘ i m(x) =
Y B log x if «, =0
X P
¢ If g > 0,0 is a reflecting boundary. 1In the other cases 0 is

absorbing.

Since Theorem 3 gives conditions for (ii) and (iv) to hold and the
arguments given above for (iii) and (v) still apply, we have that (i)-
+
(v) hold. From Theorem 3.7, V. s tight for x - 0.

If 0 is a reflecting houndary it is cusy to use Theorem 3.10 to

;
L
(
H
| g 62
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show Vn converges: a similar argument works

cxists (we only have to change the proof that

0
it follows from [40), p. 253 that Q (N > n} =
If 0 is an absorbing boundary, however,
fail., We leave it to the interested reader to

conditioned limit theorem will hold in genecral

63

to show 1im(VEIT' > 1)

€0 0
PX:SE < <) = 1) and
-l [
11 =z .\
n 1.(n).

both of these arguments
decide whether the

in this case.
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4.4 The M/G/1 Queue

In the M/G/1 queue custiomers urrvive ut the jump @imes of i

Poisson process A(t), t = 0 with rate © and bave scrvice times
which are independent positive random variables with the same
ﬁé distribution.
12 i ) 1h
AN If Ei denotes the amount of service required by the i
r A(Y)
' customer to arrive after time 0 then S(t) = .. ‘i is the amount
-
11 of work that hus arrived at the facility at tume t.  I1 the initial
3
g backlog of work is x and the server i= not idle at any moment
= hefore t then L(t) = x+S(i)~-t is the amount ot sorvk not completed
|
= at time t. If the server hus bheen 11le tben we have to add to this
.{ number the amount of time he hus noer 0 fle -0 the amount of work that
- | |
& remains in general is giver by V(1) L(')»( mir L(s) Y
b | TO
‘; It is easv Lo use DemsKor '« 1oocsvm 1o i sie conditions for U
|
| to satisfy (ii).
i
‘ L o
; Theorem 1. Supposse ‘EF] 1 and B(E - 1.7) - ATE(0 =), 1T
! —_— 1
- 1/2 1.2
1 x = x>0 then (V(n)/5n / lveoy - R ) comerges to
. n : 1
a (BEB(O) = x) where B i3 reflecting Brownion motion.
E |
51 : Proof.
’ . —
. S(t) is the sum of o1 Poisson number of independent random variables
. . 4 . . , 1/2
i with mean Eﬁl €0 trom [20) Theorem 17 2 (X(n')-‘(Egl)nt)Aﬂn
i ;
: converges to a Brownian motion B. From this it tollows that 1
i
1/2 172
3 x> X 2 0 (L(n-Y/gn 'L(O) - X on Y  converges to (B‘B(O) = N)
A
B




and the desired conclusion now follows from the continuocus mapping

theorem.
Since the limit in Theorem 1 is reflecting Brownianr motion
(iii) holds. To sce that (iv) and (v) are satisfied we observe that

if X » x20 and t 5 t> 0
n n

2
P nf V(Nb) > 0 l V(0) = chnl/ )

1/2)
X aon
n

*)

0

!
el

il

( 11f L{ns) > 0 I L(0)
O<ss

> P( inf B(s) > 0 l B(0)
O<s<t

= P[ inf B(s) > 0 | B(0)

X)
Ossst L

]

Having verified (i)-(v) the ne.-t step is to compute the asymptotic
formula for the probability of the conditioning event. To do this we
will use the Laplace transform.

T
Let 0

i

inf{t>0:U(t) = 0)
-

Let dx(a) E(e OIU(O) = %)

"

Since the arrivals form a Poisson process we have

ROBENENOINS )
and .
B0 = e T4 P (e (2)
(0 @)

From (1) it follows that there is o number 7(@)  so that




b |
|
|
-

3
¢
i
}
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d‘(ﬂ) e—xq(w) Using this fact in (2) gives
e—mﬂ(u) _ e’”xE(e‘”(Q)S(X))
-nE 58 (3 S x (15 (R
Now if s5{%) = E(e “*1) {hen E(e ' (Y)) = o x(1-5 (F))

written as
—qui)‘ = wyx-rx(1-08(n()))
or

) = oo+ 2-he (@)

If H is the distribution of gl

’

shown that cguation (4) has a unique positive solution given by

=T ae)x -1 %
() = i+ ~l1- 2. ’—l‘ e o X'] HY (dx)
J= o

1k
where H’ denotes the j-fold convolution of H.

Writing (7)) for the sum in (5) we have

L TENGED e~x(7+x(1—y(n)))

A '(fl') = =
X

fa 2
Brody ({13], p. 78) has shown that if EEI = .« » then

, 1/2 1/2
Yooy @) - (27,070 as  wlo

' ,
1- dx(’) ~ Xﬁ(zA“z)l/“G]/l as w0

Using « vesult of Dynkin (:WJ]' p. 179) now <hows that

1/21—1/2

PCT, > LD = x) o x 2/ ) as

66
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so (3) may be

’
Takacs ([46], pp. 47-49) has




At this point we arc ready to use Theorem 3.10 to prove the
conditioned limit theorem. From resulls in 4.1 or 4.3 we have that

lim (VX, TO > 1) exists so it remains to show that the scquence
xi0

+ o o .
Vn is tight. To do this we will imitate the prooif given in Section 4.1.

2
Let Jz = inf(j = l:§j> lbnl/ ).
w 1 -1 i
RT. >nd’ <ol s 5 [ P(T.>us, " =atay, A gq
4] ’h ! v 0 h '
k=1 O
w 1
= ) f P(T0 > ns]Ahl(k) = ns,J;}1 = A—l(k))
k=1 O
A—l
X P(J; = A-l(k),A_1 k) = ns)P(-—-r;—(—1il eds)
o 1 1
< 27 [ P(T, > ns|A"" (k) = ns)
dJ 0
k=1
k-1
P . k-1 -ns/\
9 P{gl < hcnl/z}hﬁlpiél\ lwnl/z] (ns)” e ds

k~1"! T‘.k

~1
Since 13‘(T0 > ns'A (K)=ns) < P(TO “» nslA(ns):k—l) the expression above

is
ool
-1 1/2, < ) -ns/ (ns/\)
< A P{ﬁ1 > hsn Y2 | P(TO> ns|A(ns) = k-Dec BEPSCE
k=1 0
1
-1 1/2
= A P&, > hgn ) g P{Ty > ns)ds
AR a
Dividing by Q {TO > n}  gives
1 a
[q (TO > nslds
; -1 2, 0
Q](J;1 <°°JT0 > n) = A 1nP[ﬁ1 > Ybnl/ 3

nQ" { TO > nj

67
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1
Since ¢ has finite variance nP[&,l > hon

1
a _1/2 . / .
Q {TO > n} = n L(n) so using Karamata’'s theorem gives

}> 0 as n - o Now

1
j‘ Qd{TO > ns)ds
0

nQa{TO > n}

n

and Qa[Jh

< m] T0 > h} - 0. To complete the tightness proof we use

the samc arguments which were used in Section 4.1 for the case « = 2.
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4.5 Conditioning on TB > n when B 1is a Bounded Set

In this section we will extend the results of Chapter 3 to study

n
the effect of conditioning a lattice random walk Sn: SO+ iji on
i=1

NB > n where Ng = inf{m 2 l:SmeB} and B is a finite set. We will
leave it to the reader to check that the arguments given helow apply
to the random walks studied in [14]) and that many of the results
below hold in the gencrality suggested by the title.

The organization of this section is the same as that of the previous
four. We will first verify that (i)-(v) hold and then show thc results
of Section 3.3 can be applicd to conclude the desircd conditioned limit
theorems.

Necessary and sufficient conditions for (ii) to hold were given
in Section 4.1. From results there

P} ine | ()] > ol = PHTH t) >0
O<s<t s

X
ny ..
so (iii) holds. To check that (Vn ’NB'> ntn) converges when x> x> 0

and tn > t > 0 rcquires more work.

Let ’I‘(0 (f) = infst > 0: inf !f(s)( - O'. Now
N } ' O<st s

a(T,O;> ty = [T, 1= t}u‘f: inf £(8) = ¢ or sup (s) = 0f
e ¢ OcsL O<s<t $ :
!
and :
x . x ) f
PUT, =t} < PV (t) =0} =0 ;
) LO} ’ i

O -
so if x>0 and P (TU =0} =1, it follows from the strong Markov
X

> : X
property that PY(B{T > t]) = 0 and Pnn{NB > njs P (T

(0] > t)

(ol
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whenever X, x> 0 and tn > t > 0.

Let An = {NB> ntn]. For all € > O

|

LIMNF A D le: int [2(s)] >€!
! O<s<t )
SO

LIMNF A D{feT, (D) > t)

{0}
*n x
and using Theorem 2.4 gives (Vrl ’NB> ntn) = (V IT[O} > t)
To show that (v) holds let TE = inf{t:V(t)€[-€,€]} and observe
that if X, 0 and n is sufficiently large
*n, c
X X \'s (TE)

n n C n (&
P U(Ny>n) s P U(Tg > 1/2)+ E|Tc < 1/2;P (N > n@1-Tg))

If € is such that TC is P0 a.s. continuous

<
11 pX“'\' > n} = PO(1S s 1/2) + E|TS < 1/2:P (TE’) > 1-18 ]
mEh = P {Teg E (Tt )
T
. 0 c g
Letting €10, P {Tg 2 1/2) { 0 and v0 (Te )1[T<1/2} so the result

follows from the fact that PX{T(O} >t} } 0 for all t> O.

17 Q”LNB » nj} decreases to a positive limit then the methods of

Section 3.3 can he used to show

0
(v:n-]/cn, 'V'O = a,NB> n) =V

so for the rest of the section we will assume Qa[NB> n}i0, that is,

Sn is recurrent.
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Using Theorem 3 of Section 4.1 and Theorem 1.3 of { 4 ], a random

walk in the domain of attraction of a stable law of index « 1is

— 8

1 -2
recurrent if «>1 and EX, =0 or & =1 and | P{{Xll > ) e =

o

o so we will restrict our attention to these cases.

1f ¢ =1 then PX{T(O} > t) =1 for all x £ 0 (sce (28],
Theorems 3.1 and 5.4) so {from the arguments in Scction 3.1 if the
limit existg in the sense of (a), V: = VO. In previous sc¢ctions we
have eliminated such cascs but in this instance we will not because
the situation has heen studied by Belkin and his results indicate there
are technical complications which make the "trivial' case the hardest
of all.

To describe Belkin’s result we have to introduce some of his
notations

for nz 0 let Qg(x,y) =P(S = y,NB > n[S = x)

n 0
[so]
n
let gB(x,y) = 2 QB(x,y)
n=0

gB(x.Y) is the expected number of visits to y  starting at x

up to and including the first visit to B. 1t is known (see [4]) that

2
Lemma 1. 1f EX1 = o then
gB(x) = lim gB(x,y) oxists.
[y[oe

11 EXf € ® then

1
QB(X) = = lim {gn(x,y) + gB(x,—y)] exists.
= Fp00 .

PN s

e Lt
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The reason for our interest in this quantity is ¢xplained by 1

the next result (which comes from [4], p. 148).

Lemma 2. Let B be a finite set, B+ = {n:n > sup B},

B = {n:n< inf B}, and C =B . B

If EX] <= then g (x)> 0 if and only if P (No < N.} > O,

N N

If EX] =« then g (x)> 0 if and only if PX{NB <N} >0

+

X 3
3 and P {NB‘< Nyl > 0.

& It is clear that PX[NC < NB} > 0 1is necessary for a nondegenerate

conditioned limit theorem. The reason for requiring PX{NB < NB]
+

and

PX(N_« XN
(Ng

9 > 0 1is less obvious but the need for this condition will be
\ _

B}

indicated later. To justify assuming gB(x) > 0 at this point, we

3
observe that this condition holds if the limit distribution has . q

a < 2 and ,bl < 1. \i

Theorem 1. ([4], p. 158) Let B be a finite set with gB(O) >0

1 and let F be the distribution of Xl.
!

If F belongs to the domain of attraction of a stable law of index

then for every rcal number y X

i 1 << 2 and EX1 =0, or F belongs to the domain of normal

' X =

! attraction of a stable law of index ¢ =1 and 1lim I yF(dy) = u(finite) ;
¢ | Xy =X P

I

: / - - - P

Lim P(S /¢ = y[S, = 0Ny > n) Hy p %

n,o g

where H is a probability distribution with characteristic function K

7 B ] K

’
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v B and a density h " given by the following formulus:

2
1f 1 < & < 2 and EXI = then
a Lo/ 17+
vo g = -t () [ x0T Dax
o, . 5

n*
where n is the characleristic funclion of the limit ¢f F (cn').

2
If o =2 and EX1 = 5 <« o then

[

h (x) = (202)—lexp(-x2/232)f[xl - (xESV /52gB(O))]
]

Rl et bt L

At this point if we were conditioning on TO > n wo could use

21 Theorem 3.9 to conclude that

#
v = . * = N
| N (Stn.]/cn’SO O,NB > n)

converges weakly to a limit process with finite dimensional distributions
given by (2) and (3) of Section 3.3.
Although Theorem 3.9 cannot be applicd the same proof can be used
to give the result desired. Returning to Section 3.3 we sce that to
conclude convergence of finite dimensional distributions we needed (in
+ *
addition to the convergence of Vn(l) to v # 0) that cquation (4)

was valid and (1i1i)-(v) hold; while to prove tightness we needed

Theorems 3.3-3.5 of Section 3.2 which hold as long as the post-Te
process converges and  lim PX(T’ < 1} = 0.

X o - {0] ’

Xy

With slightly more effort we could also prove the convergence of

# .
Vn using an analogue of Theorem 3.10. Millar ([3(], Lemma 4.5) has

shown:

Sk b i i el
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0]
Theorem 2. Let P, be the density of V (t). Let f he a

bounded Borel function,

Let Qtf = (f f(y)qt(y)dy where
2
- 2t
. = /e y/ if @=2 and
L 1/ t
1-1/ :
ot T /)y -2
4 = P (y) 4 s ] -p 5 <
t()) + 571 JLpt(y) t—s(y)]s ds if 1<y 2
0
3 1f 1<a<2 and !bl<1 then
3 lim EXf(V(t))1 /PNT > t) = Q.
& (T : L Ty
L‘ 0 N LO}> t) (0} t
i .
-
t
K If =1 and xJ0 or £ = -1 and xt0 then the same result
A
holds.
i If o =2
L{{ lim Ex{f(V(t))ll{T > tu/Px(T{m >t} = Q. f .
i x50 (o | i 8
3
v L
P, From this we see that if 1 < g < 2 and |b| < 1 then |
i
- 1im(vx]T[O} > 1) exists and the methods of Theorem 3.10 apply. If
o %0
{
7+ =2 or |bl =1, however, the limits are different for xJ0 or
‘; x10  (sce | 30] Lemma 1.6 for the case |[b] = 1) so to prove convergence
! with Theorem 3.10 we would have to show 1lim lim P{Vﬁ(t) > 0] exists.

A ti0 nose

If ¢ = 2, we can use Belkin’s result. Comparing the limits in

0y
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Theorems 1 and 2 in this case we see that for all t > 0 3
: 1 2 - ;
lim P{V#(t) >0) =% (A-(ES_ /5 g, (0))) = p.
n 2 N 8] B
-0 B
SO V# converges to a process which is positive at all t > 0 with
n

probability EB and negative at all t > 0 with probability l—PB.
If 1 <€a <2, lb' =1 and ;B(O) = 0 a similar anulysis can
be performed to identify the limit. Since this involves manipulating
the transform in Theorem 1 and does not give us much new information,
we have not done these calculations.
We close this scction by giving un example (due to Belkin [ 4 ],

pp. 162-163) which shows what can happen when ih] = 1 and

gB(O) = 0,

Example. Let ¥ be a distribution function for an integer valued

random variahle X1 with P{Xl < -2) = 0 and suppose ¥ is in the :

domain of normal attraction of a stable law of index ¢ with 1 <o < 2. > 1
Let B = (-1). Since PO[NB <l NB} = 0 it follows from Lemma 2

that QB(O) = 0 and Theorem 1 ca;not be applied. There is a good }

rcason for this: the conclusion of Theorem 1 is false. Belkin has i

shown that (Sn/cn!Sn = O’NB ~ n) converges to a random variable ?

with characteristic function Eé

1
1 - c]tla(h-u?z(t)) B VO g a0 Yar
) 0 .
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